
Optimal Portfolios in Good Times and Bad  
 

George Chow, WCMB 
gchow@wcmbllc.com  
 
Eric Jacquier, Carroll School of Management, Boston College 
jacquier@jacquier.bc.edu 
 
Mark Kritzman, WCMB  
mkritzman@wcmbllc.com 
 
Kenneth Lowry, State Street Global Markets 
CELowry@statestreet.com  
 
 
 
Published in the Financial Analysts Journal, May/June 1999 
 
272-1 Revere Street Working Papers 
 



Optimal Portfolios in Good Times and Bad

George Chow, Eric Jacquier, Mark Kritzman, and Kenneth Lowry

Recent experience with emerging market investments and hedge funds has
highlighted the fact that risk parameters are unstable. To address this
problem, we introduce a procedure for identifying multivariate outliers and
use the outliers to estimate a new covariance matrix. We suggest that a
covariance matrix estimated from outliers characterizes a portfolio’s
riskiness during market turbulence better than a full-sample covariance
matrix. We also introduce a procedure for blending an inside-sample
covariance matrix with one from an outlier sample. This procedure enables
one to express views about the likelihood of each risk regime and to
differentiate one’s aversion to them. Our framework collapses to the
Markowitz mean–variance model if (1) we set the probabilities of the inside
and outlying covariance matrixes equal to their empirical frequencies, (2)
we are equally averse to both risk regimes, and (3) we estimate the inside
and outlying covariances around the full sample’s mean.

arkowitz (1952) introduced an efficient
process for selecting portfolios. His
landmark innovation, mean–variance
optimization, requires financial ana-

lysts to estimate expected returns, standard devi-
ations, and correlations.1 Markowitz showed how
analysts could use this information to combine
assets optimally so that for a particular level of
expected return, the resulting portfolio would
offer the lowest possible level of expected risk,
usually measured as standard deviation or vari-
ance. A continuum of these portfolios displayed
in dimensions of expected return and standard
deviation is the efficient frontier.

The implementation of portfolio theory intro-
duces several problems, however, including the
estimation of the requisite parameters and the sen-
sitivity of the resulting portfolios to small differ-
ences in those parameters. Often, the parameters
are unreliable because they are estimated from
small samples.2 We address a problem that applies
to large samples as well as small samples.

Recent experience with failed hedge funds has
focused attention on a serious limitation of the

typical risk-estimation procedure, which is to
weight a sample’s observations equally in order to
estimate risk parameters. Although this procedure
may produce reasonable estimates for the full
investment horizon, it probably misrepresents a
portfolio’s risk attributes during periods of turbu-
lence or financial crisis. In turbulent markets, asset
returns tend to become more volatile and more
highly correlated. Thus, the diversification that
characterizes the sample on average disappears
when it is most needed.

For example, Siconolfi, Raghavan, and Pacelle
(1998) wrote in the Wall Street Journal:

In mid-August, Russia abruptly defaulted on
part of its debt and let the ruble fall, triggering a
flight by investors from all types of risk into safe
investments. That devastated some of LTCM’s
[Long-Term Capital Management’s] bets, lead-
ing to the huge losses of Aug. 21. (pp. A18–A19)
Another way to think about this issue is to

distinguish time-measured observations from
event-measured observations. There is a certain
arbitrariness to measuring returns simply as a
function of units of time. In some periods, no
significant events will take place to cause prices to
change, so returns will essentially reflect noise. In
other periods, several important events will influ-
ence returns. But the typical estimation of risk
parameters assigns as much importance to the
periods with no significant events as it does to the
event-filled periods. A more informative alterna-
tive might be to calibrate returns as a function of
events and then to estimate risk parameters from
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these event-measured observations. This approach
might provide a better representation of a portfo-
lio’s likely performance during turbulent markets
than the time-measured approach.

To address the issue that risk parameters are
unstable, we introduce two innovations to portfolio
optimization. First, we present a procedure for
estimating risk parameters from multivariate out-
liers. This approach is based on the rationale that
outliers are more likely to be associated with
stress-related events than with noise. Keep in mind,
however, that we define stress as periods that are
unusual, not necessarily periods characterized only
by low or negative returns.

Second, we show how to construct portfolios
that simultaneously balance risk parameters esti-
mated from “quiet,” or low-event, times with those
estimated from outlier observations representing
turbulent, stressful times. This innovation, which
was suggested to us by Markowitz, is an adaptation
of Chow’s (1995) optimization algorithm for com-
bining absolute and relative performance. 

In addition, we provide empirical results to
demonstrate both procedures.

Multivariate Outliers
An outlier in a return series for a single asset is
straightforward to identify. It is simply a return that
falls outside a chosen confidence interval around
the expected return. For example, we could define
an outlier as a return that falls within the tails that
comprise 25 percent of the distribution, 12.5 percent
on either side. Thus, with µ the expected continuous
return and σ the standard deviation of continuous
returns, if continuous returns are normally distrib-
uted, an outlier for a single return series is any
continuous return that is greater than µ + 1.175σ or
less than µ – 1.175σ because for a normal distribu-
tion, 75 percent of the returns are likely to fall within
1.175σ of the expected return µ.

A multivariate outlier is more difficult to
identify. It represents a set of contemporaneous
returns that is collectively unusual for one or more
reasons. One of the returns may be sufficiently far
from its mean to qualify the collection of returns for
that period as an outlier, or a pair of returns that are
highly correlated may exhibit a sufficient differ-
ence in their returns to render the period unusual.
Thus, a multivariate outlier may result from the
unusual performance of an individual asset or from
the unusual interaction of a combination of assets,
none of which are necessarily unusual in isolation.

How does one determine explicitly whether to
classify an observation as “usual” or as an “outlier”?
Figure 1 presents a scatterplot of two independent

return series (for Asset 1 and for Asset 2) with equal
variances. To identify outliers, we first draw a circle
around the mean of the data. The radius we choose
for the circle is our tolerance for outliers and takes
into account the variances of the two return series.
As shown in Figure 2, the inside circle is our bound-
ary for defining outliers. To determine which obser-
vations are outliers, we calculate the equation of a
circle for each observation with its center located at
the mean of the data and its perimeter passing
through a given observation. If the radius of this
circle is greater than our “tolerance radius,” we
define that observation as an outlier. In Figure 2, for
example, the observation designated by the star is
an outlier because the radius of the circle passing
through the star is greater than the radius of our
tolerance circle.  

Figure 1. Scatterplot of Independent Return 
Series with Equal Variances

Figure 2. Tolerance Circle and One Outlier Circle
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This approach is appropriate for a sample of
returns if the returns are uncorrelated and have the
same variance. When the return series have differ-
ent variances, a circle is no longer appropriate for
identifying outliers. The scatterplot in Figure 3 is for
two uncorrelated return series that have unequal
variances and shows that under these conditions,
an ellipse is the appropriate shape for defining the
outlier boundary.3 As for the circle, we start with
our “tolerance ellipse,” and for each point, we cal-
culate an ellipse with a parallel perimeter. Then, we
compare their boundaries.

In Figure 4, we relax the remaining assumption
and allow for a nonzero correlation. That the ellipse
is positively sloped implies that the return series
are positively correlated. With correlated returns,
we generate tolerance ellipses whose axes are
rotated (shown by the straight lines in Figure 4).
Our basic intuition for identifying an outlier
remains unchanged, but when the return series are
correlated or when the sample includes more than
three return series, we must use matrix algebra for
the exact computation of an outlier. This procedure
is described in Appendix A. 

Optimal Portfolios with Event- 
Varying Covariance Matrixes
In the previous section, we showed how to identify
multivariate outliers from which to estimate risk
parameters. These observations are essentially
representative of turbulent markets, which are
characterized by higher-than-normal volatility and
correlations. One might argue that investors should
focus only on long-term performance. We suggest,

however, that their portfolios may not survive to
generate long-term performance if the portfolios
cannot withstand exceptional periods of market
turbulence.

Even so, we do not advocate the use of a cova-
riance matrix estimated only from outlying obser-
vations. To focus on stressful periods alone would
be shortsighted and could lead investors to hold
unduly conservative portfolios that would fail to
achieve their long-term objectives.

We argue, instead, that investors care about risk
during quiet periods and risk during stressful peri-
ods. We address this dual focus in two ways. First,
we allow investors to estimate two separate covari-
ance matrixes—one from the inside observations to
represent a quiet risk regime and the other from the
outlier observations to represent a stressful risk
regime.4 We then assign a probability of occurrence
to each risk regime. Second, we allow investors to
specify different degrees of risk aversion toward the
two regimes. Investors can, of course, express a view
about the relative likelihood of the two regimes and
at the same time assign different risk aversions to
them, but separating the two parameters is impor-
tant: One is a forecast, whereas the other is a behav-
ioral parameter. Too often, a forecast of risk is
confused with an attitude toward risk.

Once we have estimated the quiet and stressful
covariance matrixes, we blend them into a single
covariance matrix that can reflect one’s view about
the likelihood of each regime and one’s attitude
toward each regime. We then incorporate this
blended covariance matrix into the standard opti-
mization algorithm for selecting portfolios. This
procedure is described in Appendix B. 

Figure 3. Scatterplot of Uncorrelated Asset 
Returns with Unequal Variances
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Figure 4. Scatterplot of Correlated Asset 
Returns with Unequal Variances
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Our approach for selecting portfolios based on
a blended covariance matrix is internally consistent
in the following sense: The blended covariance
matrix equals the full-sample covariance matrix if
(1) we set the probabilities of the inside and outlying
covariance matrixes equal to their empirical fre-
quencies, (2) we are equally averse to both risk
regimes, and (3) we estimate the inside and outlying
covariances around the full-sample mean. Thus,
our framework nests the original Markowitz mean–
variance model in an intuitive manner.

Empirical Results. We applied our technique
to a sample of actual returns for eight asset classes
beginning in January 1988 and continuing through
September 1998. These return series are for eight of
the asset-class benchmarks used by the Harvard
Management Company to evaluate the policy port-
folio of Harvard’s endowment fund. They are
domestic equities (in this case, “domestic” means
“U.S.”), domestic bonds, foreign (non-U.S., devel-
oped market) equities, foreign bonds, high-yield
U.S. bonds, emerging market equities, commodities,
and cash equivalents.

Table 1 shows the returns of these eight asset
classes for the first nine months of 1998. August and
September 1998, shaded on the table, qualify as
outliers based on an outer boundary for which 25
percent of the multivariate distribution is excluded.
August and September 1998 are 2 of 27 months of
the 129 months in the full sample that qualified as
outliers, which equals 20.9 percent of the months.
That fewer than 25 percent of the months were
selected implies that the multivariate distribution
of these returns is slightly plattykurtic; that is, more
of the observations are clustered near the mean
than theory would predict. 

The equity returns in August 1998 were extraor-
dinarily low. It was the month in which Russia
defaulted on its sovereign debt, which triggered a
flight from risky assets. Even commodities, which

typically diversify financial assets, generated signif-
icant losses in August. The returns in September
1998 were not unusual in their magnitude, but for-
eign equities, which typically move in tandem with
domestic and emerging market equities, generated
a loss whereas domestic and emerging market equi-
ties produced significant gains. Commodities also
generated a gain during this period. February pro-
duced high returns, but according to our outlier
definition, those results were not strange.

When we consider more than three asset
classes, why a particular set of returns qualifies or
fails to qualify as an outlier is not always clear
because, as mentioned earlier, we cannot visualize
the observations that lie outside the boundary. We
must rely on mathematical techniques to identify
the higher-dimension outliers.

Table 2 provides the annualized standard devi-
ations and correlations estimated from the full sam-
ple of 129 months. The average standard deviation
of these asset classes based on the full sample is
11.67 percent, and the simple average correlation is
approximately 0.12. 

Table 3 presents the same information for the
sample of 27 outliers. The average standard devia-
tion for the outlier sample is 18.27 percent, a 57
percent increase over the full-sample standard
deviation. The average correlation is also higher for
the outlier sample, but at approximately 0.14, it is
only 15 percent higher than for the full sample. 

The change in the average correlation
obscures important details, however, about the
diversification properties of the various asset
classes. For example, as Table 4 shows, if com-
modities are excluded, the average correlation for
the other asset classes in the full sample is
approximately 0.17 but for the outlier sample, the
average correlation increases 36 percent, from 0.17
to approximately 0.23. In contrast, the average
correlation of commodities with all the other asset
classes declines in the outlier sample from the full

Table 1. Returns for Eight Asset Classes, January 1998–September 1998
(25 percent boundary)

Month/
Day of 1998

Domestic 
Equities

Foreign 
Equities

Emerging 
Market Equities

Domestic 
Bonds

Foreign 
Bonds

High-Yield 
Bonds Commodities Cash

1/31 0.59% 4.29% –5.70% 1.99% 0.63% 1.21% –1.61% 0.47%
2/28 7.35 6.88 10.30 –0.62 1.44 1.49 –6.60 0.47
3/31 5.01 3.77 3.22 0.20 –1.41 –1.08 –0.52 0.47
4/30 1.14 0.87 –0.80 0.40 2.24 0.71 –2.73 0.47
5/31 –2.26 –0.17 –11.91 1.59 0.03 2.09 –4.72 0.47
6/30 3.45 0.73 –10.30 1.85 –0.30 0.55 –3.55 0.47
7/31 –1.66 1.17 2.87 –0.18 0.33 –0.41 –7.86 0.47
8/31 –15.15 –12.43 –25.42 4.06 2.73 –11.80 –5.90 0.47
9/30 6.86 –3.03 4.89 3.57 6.67 –0.87 10.22 0.46
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sample by a factor of nearly 5, from –0.03 to
approximately –0.14. Hence, the full-sample cor-
relations belie the weaker diversification proper-
ties of financial assets in times of stress but
understate the diversification benefits of com-
modities when markets experience turbulence. 

Note that we used 25 percent to define the
outlying area of the distribution. One might be
tempted to explore more extreme outliers, which
would reduce the number of outliers, but this
reduction could cause serious problems in the
estimation of the covariance matrix. In order for the
covariance matrix estimator to be reasonably
precise, observations should always far outnumber
assets. As a rule, observations should be at least
twice the number of assets.5 In our example, we
identified 27 observations for an eight-by-eight
covariance matrix, which produced 36 parameters.

Optimal Portfolios. The composition of the
optimal portfolio shifts when we switch from using

the full-sample risk parameters to using the
outlier-sample risk parameters. For both optimiza-
tions, we assumed the following mean returns for
the asset classes:6

Because the mean returns were preset, the changes
when different risk parameters were used reflect
only the differences in those parameters.

Table 5 shows the optimal portfolio weights
based on the full-sample risk parameters and the
outlier-sample risk parameters under the assump-
tion that we are willing to sacrifice 2.5 units of
expected return to lower our portfolio’s variance by

Table 2. Full-Sample Risk Parameters

Domestic 
Equities

Foreign 
Equities

Emerging 
Market Equities

Domestic 
Bonds

Foreign 
Bonds

High-Yield 
Bonds Commodities Cash

A. Standard deviation 12.99% 17.04% 22.62% 6.79% 9.57% 8.00% 15.94% 0.44%

B. Correlation
Domestic equities 1.00 0.50 0.39 0.39 0.05 0.51 –0.09 0.06
Foreign equities 1.00 0.37 0.17 0.48 0.33 –0.09 –0.07
Emerging market equities 1.00 –0.08 –0.14 0.34 –0.05 –0.06
Domestic bonds 1.00 0.28 0.13 –0.08 0.10
Foreign bonds 1.00 –0.03 0.03 –0.04
High-yield bonds 1.00 –0.14 –0.13
Commodities 1.00 0.21
Cash 1.00

Table 3. Outlier-Sample Risk Parameters

Domestic 
Equities

Foreign 
Equities

Emerging 
Market Equities

Domestic 
Bonds

Foreign 
Bonds

High-Yield 
Bonds Commodities Cash

A. Standard deviation 20.55% 27.35% 34.29% 9.74% 14.09% 14.85% 24.83% 0.47%

B. Correlation
Domestic equities 1.00 0.57 0.49 0.43 0.14 0.73 –0.23 0.00
Foreign equities 1.00 0.40 0.27 0.49 0.42 –0.29 0.00
Emerging market equities 1.00 0.08 –0.18 0.56 –0.25 –0.20
Domestic bonds 1.00 0.32 0.13 –0.14 0.20
Foreign bonds 1.00 –0.12 –0.09 0.12
High-yield bonds 1.00 –0.18 –0.01
Commodities 1.00 0.20
Cash 1.00

Domestic equities 10.00%
Foreign equities 10.25
Emerging market equities 12.00
Domestic bonds 7.00
Foreign bonds 7.25
High-yield bonds 8.00
Commodities 6.00
Cash equivalents 5.00

Table 4. Full-Sample and Outlier-Sample Differences
(averages)

Sample
Standard 
Deviation Correlation

Correlation of All Assets 
Excluding Commodities

Correlation of Commodities 
with All Other Assets

Full 11.67% 0.12 0.17 –0.03
Outlier 18.27 0.14 0.23 –0.14
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1 unit. Given that degree of risk aversion, together
with the covariance matrix estimated from the full
sample of monthly returns, the full-sample optimal
portfolio would contain primarily domestic equi-
ties, foreign assets, and high-yield bonds. Very little
of the portfolio would be allocated to domestic
bonds and commodities. Table 6 provides the port-
folios’ expected returns and standard deviations in
normal and in stressful times. This allocation,
assuming the full-sample covariance matrix charac-
terizes the risk of our investment horizon, offers an
expected return of 8.82 percent with a standard
deviation of only 7.27 percent. In an environment
that is better represented by the risk parameters
associated with the outlier sample, however, this
portfolio will experience an almost 70 percent
increase in standard deviation. 

Table 5 shows that if we were structuring an
optimal portfolio based on the outlier-sample
covariance matrix, we would reduce the equity
component to 13 percent, increase commodities to
12 percent, and increase fixed-income investments
to about 75 percent of the portfolio. This portfolio
would be optimal for periods that are character-
ized by the covariance matrix estimated from the
sample’s outliers as long as our risk aversion
remained constant. In turbulent times, as Table 6
shows, this portfolio’s volatility would be 7.20
percent, in contrast to the volatility of the portfolio
based on the full sample (12.32 percent). The

outlier-sample optimal mix also has lower volatil-
ity than the full-sample optimal mix in a normal
environment, but the shift in assets is not without
cost. The changes in allocation reduce expected
return from 8.82 percent to 7.58 percent.

Herein lies the problem. If we optimize based
on the full-sample covariance matrix, the portfolio
will be significantly suboptimal in a period of
financial stress and, indeed, may not survive such
a period without unpropitious adjustments. If we
optimize based on the outlier covariance matrix,
the portfolio’s expected return for the full horizon
will be lower than desired. What to do?

As with many choices, the best solution is to
compromise. Table 7 presents optimal portfolios
based on blended covariance matrixes, their
expected performance during quiet environments
(times characterized by the inside sample only),
normal environments (full-sample times), and
stressful environments (outlier-sample times). 

The first portfolio shown in Table 7 is the opti-
mal portfolio based on the full-sample covariance
matrix. The next portfolio assumes that we are 1.5
times as averse to outlier risk as we are to risk during
quiet periods and that outliers will occur with the
same frequency as they occurred empirically in our
study (20.9 percent of the months). As expected, this
relatively higher aversion to outlier risk shifts the
full-sample optimal portfolio away from equities
and toward commodities and domestic bonds.

The next column shows the optimal portfolio
if we are equally averse to outlier risk and
quiet-period risk and we believe turbulent periods
will occur 50 percent of the time rather than their
empirical frequency. Again, the optimal portfolio
under these conditions is more conservative than
the full-sample portfolio. It is more conservative
because, even though we are equally averse to both
environments, we expect turbulent periods to occur
more frequently than they did empirically.

The final column shows the optimal portfolio
if we assume that outlier events will occur 50 per-
cent of the time, rather than their empirical fre-
quency, and we are 1.5 times as averse to outlier
risk as we are to risk during quiet periods. These
assumptions emphasize the outlier sample in two
ways—by assigning it a greater probability than its
empirical frequency and by raising our relative
aversion to outlier risk. This dual emphasis results
in an optimal portfolio that, of the choices in Table
7, most closely resembles the portfolio estimated
solely from the outlier sample. 

Conclusion
We introduced a methodology to address the insta-
bility of risk parameters. Specifically, we identified

Table 5. Asset Mix for Full-Sample and 
Outlier-Sample Optimal Portfolios

Asset Class
Full-Sample 
Optimal Mix

Outlier-Sample 
Optimal Mix

Domestic equities 25% 2%
Foreign equities 0 0
Emerging market equities 16 11
Domestic bonds 8 28
Foreign bonds 26 25
High-yield bonds 22 16
Commodities 3 12
Cash 0 7

Table 6. Full-Sample and Outlier-Sample 
Optimal Portfolios

Statistic by Environment
Full-Sample 
Optimal Mix

Outlier-Sample 
Optimal Mix

Normal environment
Expected return 8.82% 7.58%
Standard deviation 7.27 4.37

Stressful environment
Expected return 8.82 7.58
Standard deviation 12.32 7.20
70  Association for Investment Management and Research
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multivariate outliers and used these outliers to esti-
mate a new covariance matrix. We believe that a
covariance matrix estimated from outliers provides
a better representation of a portfolio’s riskiness
during periods of market turbulence than does a
covariance matrix estimated from the full sample
of observations.

We introduced a procedure for blending
an inside-sample covariance matrix with an
outlier-sample covariance matrix. The procedure
enables investors to express their views about the
likelihood of each risk regime and to differentiate
their aversion to the regimes.

Our empirical results supported the view that
volatility and correlations estimated from outliers
differ significantly from full-sample estimates. In
addition, we identified optimal portfolios from both
covariance matrixes while holding expected returns
and risk aversion constant. Given our sample, the
volatility of the optimal portfolio estimated from the
full-sample covariance matrix nearly doubled when
the portfolio was subjected to the outlier-sample
covariance matrix. As expected, the outlier-sample

covariance matrix produced a much more conserva-
tive optimal mix than the full-sample matrix but
with a concomitantly lower expected return.

Results based on covariance matrixes that were
blended from quiet and turbulent regimes showed
the sensitivity of portfolio weights to variations in
one’s views about the relative likelihood of quiet
and turbulent periods and one’s relative aversion
to each risk regime.

Table 7. Optimal Portfolios from Blended Covariance Matrixes

Full-Sample 
Optimal Mix

Empirical Probability/
Higher Outlier Aversion

Equal Probability/
Equal Aversion

Equal Probability/
Higher Outlier Aversion

Domestic equities 25% 21% 12% 9%
Foreign equities 0 0 0 0
Emerging market equities 16 16 14 13
Domestic bonds 8 14 23 25
Foreign bonds 26 26 26 27
High-yield bonds 22 17 14 15
Commodities 3 6 10 11
Cash 0 0 0 0

Quiet environment
Expected return 8.82 8.60 8.18 8.05
Standard deviation 5.14 4.91 4.50 4.38

Normal environment
Expected return 8.82 8.60 8.18 8.05
Standard deviation 7.27 6.70 5.81 5.58

Stressful environment
Expected return 8.82 8.60 8.18 8.05
Standard deviation 12.32 11.03 9.13 8.64

We thank Harry Markowitz for helpful comments—in
particular, his suggestion to adapt Chow’s multivariate
objective function to blend covariance matrixes. We also
thank George Aragon, Stephen Brown, Kenneth Froot,
Alan Marcus, and Edouard Stirling for their comments;
Edward Ladd, Jay Light, Jack Meyer, Michael Pradko,
David Salem, Larry Siegel, David Swensen, and Richard
Zeckhauser for their comments on the application of this
methodology to the Harvard Endowment Fund; and the
participants of the Work in Progress seminar at Boston
College. Finally, Eric Jacquier wishes to acknowledge
financial support from C.I.R.A.N.O.
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Appendix A. Identification of 
Multivariate Outliers
The calculation of a multivariate outlier is given by
the following equation: 

dt = (yt – µ) Σ–1 (yt – µ)′ , (A1)

where
dt = vector distance from multivariate average
yt = return series
µ = mean vector of return series yt

Σ = covariance matrix of return series yt

We assume the return series yt is normally
distributed with a mean vector µ and a covariance
matrix Σ. For 12 return series, for example, an
individual observation of yt would be the set of the
12 asset returns for a specific measurement interval.
We choose a tolerance “distance” and examine the
distance, dt, for each vector in the series. If the
observed dt is greater than the tolerance distance,
we define that vector as an outlier.

For two uncorrelated return series, Equation
A1 simplifies to the following equation:

, (A2)

which is the equation of an ellipse with horizontal
and vertical axes.

If the variances of the return series are equal,
Equation A2 simplifies to a circle.

For the general n-return normal series case, dt
is distributed as a chi-square distribution with n
degrees of freedom. Under this assumption, if an
outlier is defined as falling beyond the outer 25
percent of the distribution and we have 12 return
series, our tolerance boundary is a chi-square score
of 14.84. Using Equation A1, we calculate the
chi-square score for each vector in our series. If the
observed score is greater than 14.84, that vector is
an outlier.

Appendix B. Blended Covariance 
Matrixes
To identify optimal portfolios based on our view of
and attitude toward the two risk regimes, we first
augment the standard mean–variance objective
function to include the inside covariance matrix Σi

and the outlying covariance matrix Σ0, and we
assign probabilities to them.7 The vector of returns
has a mean µ and a covariance matrix Σ. We replace
the full-sample covariance matrix Σ with

pΣi + (1 – p)Σ0, (B1)

where p is the probability of falling within the
inside sample and 1 – p is the probability of falling
within the outlier sample.8 

Substituting these two covariance matrixes
into the standard equation for the expected utility,
EU, of a portfolio with a weight vector w yields

EU = w′µ – λ [pw′ Σi w + (1 – p)w′ Σ0w], (B2)

where λ equals aversion to full-sample risk.
Equation B2 allows us to express views about

the respective probabilities of the two risk regimes,
but it assumes we are equally averse to both regimes.
To differentiate our aversions to the two regimes, we
first assign values that reflect our relative aversion
to each. Then, we rescale those values so that they
sum to 2. For example, suppose our aversion to
inside risk equals 2 and our aversion to outlier risk
equals 3. We rescale our inside risk aversion to equal
0.80 and our outlier risk aversion to equal 1.20, as
follows:

(B3)

(B4)

We then multiply the probability-weighted inside
and outlying covariance matrixes by their respec-
tive rescaled risk aversions:

EU = w′µ – λ [λ i*pw′ Σi w + λ0*(1 – p) w′Σ0w]. (B5)

Although Equation B5 has the virtue of trans-
parency, it is somewhat cumbersome. We can sim-
plify it by defining a grand covariance matrix to
equal

Σ* = λ i*pΣi + λ0*(1 – p)Σ0. (B6)

This definition allows us to recast the objective
function as

EU = w′µ – λ (w′ Σ*w), (B7)

which is the original Markowitz objective function.

dt

(y – µy )2

σy
2

------------------------
(x – µx )2

σ2
x

-----------------------+=

λ i*
2λ i

λ i λ0+
-----------------=

λ0*
2λ0

λ i λ0+
----------------- .=
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Notes
1. Markowitz was awarded the Nobel Prize in economics in

1990 for his pioneering work in portfolio selection.
2. Many of the small-sample problems, together with sug-

gested solutions, are well documented by Michaud (1998).
3. If we were to consider three return series, the outlier bound-

ary would be an ellipsoid, a form that looks something like
a football. We are unable to visualize an outlier boundary
for samples that include more than three return series—at
least not without the assistance of a controlled substance.

4. Remember that “regime” in this context refers to the inside
and outlier samples, not necessarily to a period that is
chronologically contiguous.

5. In the limit, the estimator is meaningless if there are fewer
observations than assets. For large covariance matrixes, a
factor model may be necessary to restrict the number of
parameters in the matrix.

6. The expected returns were chosen for their reasonableness
and are not related to either the full-sample means or the

outlier-sample means, nor do they represent the views of
the Harvard Management Company.

7. We modeled asset returns as if they came from a discrete
mixture of two different normal distributions. To derive the
chi-square test, we assumed that all returns came from the
same normal distribution. This minor contradiction is sim-
ilar to the contradiction that occurs in standard statistics
when we use a test that is valid under a null hypothesis to
reject that null hypothesis. In research in progress, we are
studying a theoretically more efficient outlier test that
makes full use of the model in Equation B1. Whether it will
differ much from the simple chi-square test is unclear.

8. Note that this equality also applies exactly to the
estimates of these quantities as long as the estimation is
consistent with the model—that is, the number of
observations from the inside and outlier scenarios are Ti
and T0 such that Ti/T = (T – T0)/T = p.
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